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A METHOD FOR SOLVING THE NONSIMILAR LAMINAR 

BOUNDARY-LAYER EQUATIONS INCLUDING 

FOREIGN GAS INJECTION 

By Joseph G. Marvin and Yvonne S. Sheaffer 

Ames Research. Center 

SUMMARY 

A numerical method for solving the nonsimilar boundary-layer equations, 
including binary gas injection, is developed for nonreacting gases. The con- 
tinuity, momentum, energy, and species-concentration equations and boundary 
conditions are reduced to a set of linear algebraic equations in terms of the 
dependent variables only by appropriate application o f  implicit finite differ- 
ence expressions. To solve the equations, profiles of the unknowns at the 
initial station are specified, together with certain boundary conditions along 
the body surface and boundary-layer edge. 
through solution, by the same method, employing the similarity form of the con- 
servation equations that apply exactly at the starting points for the problems 
considered. 

The initial profiles are obtained 

Comparisons of the present solutions with exact similarity solutions for 
air and helium injection are presented to demonstrate the accuracy of the 
method for evaluating the dependent variables along the initial data line. 
Comparisons of the present solutions with nonsimilar solutions obtained from 
other numerical methods and comparisons with experimental data for air, argon, 
and helium injection are presented to evaluate the accuracy and advantages of 
the method. 

INTRODUCTION 

At the inception of this investi.gation, wind-tunnel tests were planned 
that involved foreign gas injection through a porous model. 
requirements for data correlations, it was necessary to calculate various 
boundary-layer parameters that required solutions to the nonsimilar boundary- 
layer equations including foreign gas injection. A computer program utilizing 
the Smith-Clutter approach was available for solving the nonsimilar equations 
(see, e.g., refs. 1 and 2 ) .  While experience has shown this program was use- 
ful for studying the effects of pressure gradient without injection (see 
refs. 3 and 4 ) ,  computer time and convergence limitations made it impractical 
for the present application. Therefore, a finite difference method for 
solving the nonsimilar equations including binary gas injection was developed 
to circumvent these limitations. 

To meet the 



Finite difference schemes can be categorized as explicit or implicit. 
The explicit schemes are conditionally stable; for most applications, the Ax 
step size becomes impractically small and resulting computing times exces- 
sively long (see ref. 5 ) .  The implicit schemes, on the other hand, are 
usually unconditionally stable. Flugge-Lotz and Blottner (ref. 6) took advan- 
tage of this fact to demonstrate the utility and speed of an implicit scheme 
for solving the boundary-layer equations. Blottner later applied this tech- 
nique (ref. 7) to solve the complicated nonequilibrium boundary-layer problem. 
Although the method described in reference 6 has many advantages, it was not 
applied extensively until recently (e.g., refs. 8 and 9). 

The present work uses the basic implicit scheme described in reference 6, 

The asymp- 
A7 step 

but here the basic equations are transformed to new coordinates with finite 
boundaries by means of a transformation described in reference 10. 
totic nature of the transformation allows the choice of a constant 
size within finite limits (say, between 0 and l ) ,  thus eliminating the neces- 
sity of searching for the effective boundary-layer edge through additional 
iteration. Subsequent to the coordinate transformation, the equations are put 
in finite difference form so that the unknowns appear linearly. The resulting 
set of linear algebraic equations and a stream-function equation are solved on 
a digital computer after specifying streamwise boundary conditions along the 
body surface and boundary-layer edge and profiles of the unknowns at the 
initial streamwise location. The initial profiles are obtained by the same 
method employing the similarity form of the equations that apply exactly a; 
the streamwise starting locations for the problems considered. 

This report presents the solution method and demonstrates, by example, 
its capabilities and accuracy. 
method was specifically directed toward solutions that included binary 
injection, the method is applicable to many other boundary-layer problems. 

Although the original application of the 

SYMBOLS 

An,Bn,Cn coefficient matrices given in equation (23)  

C mass concentration 

frozen specific heat at constant pressure, see equation (18) cP 

specific heat at constant volume cV 

- 
'n solution vector (column matrix) in equation (23)  

D" total displacement thickness with mass addition, see equation (39) 

D12 binary diffusion coefficient 
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E 

F 

f 

G 

k 

L 

M 

M 

m 

N 

n 

P 

P 

Pr 

defined by equations (28) and (29) 

defined by equation (4) 

stream function, 5 do 
dummy variable 

edge boundary-condition vector 

boundary-condition coefficient matrix 

wall boundary-condition vector denoting column matrix 

vector denoting column matrix given by equation (28) 

weighting factor in transport coefficients, see equation (22) 

thermal conductivity 

length of nonporous tip 

dummy variable 

molecular weight 

mesh point in x direction 

denotes number of mesh points in y direction 

mesh point in y direction, n = 1,2, . . . , N 
coefficient in polynomial expressions for properties, see 
equation (15) 

pres sure 

Prandtl number, cP f 
heat-transfer rate 

dummy variable 

universal gas constant 

normal distance from axis of symmetry to body surface 

dimensionless distance along surface in flow direction - 5 
6 2  

sc 1-I Schmidt number, - 
PD;, 
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T 

t 

U 

V 

a 

B 

6" 

E 

17 

9 

5 

AY 

t normalized temperature, - 
t0 

temper at ure 

velocity in streamwise direction 

velocity normal to streamwise direction 

mole fraction 

streamwise distance from tip of body 

normal distance from body surface 

transformed normal distance defined by equation (7) 

stretched normal distance, a(1 - y) 
scale factor in equation (7 )  

25 due pressure gradient parameter, - - 
Ue dS 

displacement thickness given by equation (38) 

wall boundary conditions on species (eqs. (26) and (30 ) )  

transformed normal coordinate (eq. ( 5 ) )  

momentum thickness given by equation (40) 

viscosity 

transformed streamwise coordinate (eq. ( 6 ) )  

density 

vector denoting column matrix for unknowns at (m + I), see 
equation (23) 

shear stress defined by equation (33) 

dimensionless density-viscosity product, - P!J 
P eve 

step size in y direction 
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I 

Subscripts 

a,b,c,d,e,f mesh points for finite difference scheme (see sketch (b)) 

e boundary-layer-edge value 

i species i; i = 1 is free stream, i = 2 is injectant 

I initial value 

k coefficient number in polynomial for thermodynamic and transport 
properties 

2 evaluated at arbitrary length, ? = 2 

0 stagnation-point value 

NS nonsimilar value 

S similar value 

Y , n , S , S  

W wall value 

1 free-stream species 

2 injected species 

partial differentiation with respect to the subscript 

Superscripts 

V 

n 

k 

iteration number 

geometric factor; n = 0 is two-dimensional and 
axisymmetric 

n = 1 is 

polynomial degree 

ANALYSIS 

The nonsimilar, laminar boundary-layer equations are given in this 
section, along with the equations for evaluating the thermodynamic and trans- 
port properties of the binary gas systems considered. The method of solution, 
involving a transformation and a linearization of the boundary-layer equations, 
is presented and equations are given for determining shear stress, heat trans- 
fer, and other important boundary-layer parameters. 

5 



Boundary-Layer Equations 

The mass, momentum, energy, and spec ie s  conservat ion equat ions f o r  a 
b inary  gas system i n  t h e  familiar Levy-Lees v a r i a b l e s  (e.g., r e f .  2) a r e :  

Momentum 

Energy 

(2 1 

Species (binary system) 

where 

F = f , = -  U 
Ue 

5 =I" p u 1-1 r2n dx e e e  

The boundary condi t ions  a r e  

n = o  
F = O  

T = T, 

- 
f ( 0 )  = - - I" (pv),rn d: m PI 
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F + 1  

T + Te 

c, + 1 

The boundary conditions at 
mass flow of the free-stream gas at the wall is zero (e.g., ref. 2). 

T-I = 0 are based on the assumption that the net 

Transformation to Finite Coordinates 

It is convenient from a computational viewpoint to transform the above 
equations to a new system of coordinates wherein the indefinite limit of inte- 
gration on T-I is replaced by a definite limit (e.g., ref. 10). Let 

For a system of finite-difference equations with a fixed number of 
points and a fixed interval Ay, a is used as a scaling factor to provide an 
optimum distribution of nodal points across the boundary layer. A certain 
amount of experience is required to achieve the optimum results, as will be 
discussed subsequently. 

y nodal 

The following transformation identities result 

( I n  = a(1 - Y)( Iy 
( = a2(1 - Y)[(l - Y)( Iyy - ( ),I (8) 

Employing these transformation identities, equations (1) through (4) 
become 

Momentum 

a2(1 - Y)2$yFy + $a2(1 - Y ) ~ F ~ ~  - $a2(1 - y)Fy + a(1 - y)fF + B(pe/p - F2) Y 

Energy 
1 

Y 

F + -  a2(1 - y)2Fy2 - -- 

- Ty] + af(1 - y)T y)TYY 
--'(I- 
cP 

2 2 Bue Pe 
C t  a2(1 - Y)~C, T 

y y Cpto P P O  

= 26[FTs - a(l - y)T f ] (10) Y e  

7 



11.1 I I I 

Species 

a2(1 - y)2cly($)y + &2(1 - y)2C, - L 2 ( 1  - y)C, + af(1 - y)C, 
YY sc Y Y 

where 

The boundary conditions become for y = 0 

F = O  
T = Tw 

and for y = 1 

T = Te 

c, = 1 

Thermodynamic and Transport Properties 

To complete the system of equations, the thermodynamic and ,ransport 
properties are expressed as functions of the dependent variables 
the manner described in reference 2. 
stituents were expressed as polynomials in terms of temperature; for example, 

C, and T in 
The properties of the individual gas con- 

(15) 
= x P k T  k k  

‘pi o 

A similar expression was used f o r  pi and D12. Values of the coefficients, Pk, 

8 



used t o  ob ta in  C , ui, and D i j  f o r  t h e  gases  considered a r e  given i n  
r e fe rence  2 ,  a long with a b r i e f  d e s c r i p t i o n  of t h e  assumptions regarding 
in te rmolecular  p o t e n t i a l s .  

P i  

The thermal conduct iv i ty  of  each c o n s t i t u e n t  was obtained from Eucken’s 
r e l a t i o n  

where 

Mixture va lues  of t h e  thermodynamic and t r a n s p o r t  p r o p e r t i e s  were 
obtained from t h e  equat ions:  

c = c + C l ( c p 1  - c p )  
p2 2 

Mixture values  of  t h e  t r a n s p o r t  p r o p e r t i e s  were obtained from t h e  approximate 
combining equat ions taken from re fe rence  11: 

where 

k ,  k, 

and where K 2 1  is  obtained from equat ion (22) with s u b s c r i p t s  1 and 2 
interchanged. 

9 
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Method of Solution 

To obtain a numerical solution, equations (9) through (11) are 
approximated by a set of implicit finite difference equations of the Crank- 
Nicholson type and the ensuing tridiagonal matrix equations 
a computer by the algorithm given in reference 12. 
rithm, the equations must be linearized, values for the unknowns at the 
initial streamwise location must be specified along with streamwise boundary 
conditions at the wall and the boundary-layer edge. 
tions of this section, the difference equations, the boundary conditions, and 
the solution are discussed. 

AS = 8 ,  solved on 
To use the solution algo- 

In the subsequent por- 

The mesh-point diagram for the Crank-Nicholson scheme is shown below. 

from line (m) to (m + 1) are given in appendix A.  
The finite-difference equations used to assure linear equations when marching 

Substituting the difference equations into the 
momentum, energy, and species equations (eqs. (9) - 

matrix equation form, one obtains 

n+l 

E (11)) results in 3(N - 2) linear equations. In 

- - - - 
hGn-1 + BnGn + CnGn+l = bn n=2,3, . . . ,N-1 

n-l 
(23) 

m m+l 

Sketch (a) 
where, f o r  example, the vectors and coefficient 
matrices have the following form 

o r  n,m+1/2 or n,m+1/2 

As shown in appendix A, the matrices Bn and Cn are similar in form to An, 
except B23 = 0. The matrices 4, Bn, and Cn, and the solution vector bn, 
are considered known and are evaluated at (n, m) o r  (n, m + 1/2) depending on 
the iteration described subsequently. Equations for the matrix elements and 
vector 6, are given in appendix A.  

- 

- 

To complete the system of equations, values of the dependent variables - - 
wn 
solution algorithm in reference 12, these were written as 

at the two boundaries must be specified. To be consistent with the 

10 



Specia l  a t t e n t i o n  was given t o  t h e  boundary condi t ion  on wall concent ra t ion  t o  
a r r i v e  a t  a form c o n s i s t e n t  with equat ion (24).  
by expressing t h e  concent ra t ion  a t  n = 2 i n  f i n i t e  d i f f e r e n c e  form as  a 
Taylor  series about n = 1 and r e t a i n i n g  t h r e e  terms. 

The condi t ion  was obtained 

The terms [C,(O)] and [Cl(O)] a r e  obtained from t h e  boundary condi t ion ,  

equat ion (13), and equat ion (11) evaluated a t  y = 0. After some manipulation, 
equat ion (25) i s  r e w r i t t e n  as 

Y YY 

where 

Using equat ion (26) t o g e t h e r  with equat ions (13) and (14),  t h e  elements of t h e  
mat r ix  c o e f f i c i e n t  and vec to r s  i n  equat ions (24) become 

H =  1 1 + 8, ENS ] n,m n,m+i n,m*i 
o r  n,m+1/2 

Equations (23),  t oge the r  with t h e  boundary cond i t ions ,  equat ions (24) ,  
form a s e t  of l i n e a r  equat ions which can be solved on a d i g i t a l  computer once 
p r o f i l e s  of t h e  dependent v a r i a b l e s  a t  an i n i t i a l  streamwise loca t ion  a r e  
spec i f i ed .  The a lgor i thm f o r  s o l u t i o n ,  taken from re fe rence  12,  i s  

where 

2 s n s N - 1  

and where 



The computation proceeds with eva lua t ion  of  equat ions (28) from t h e  wall 

Values of  t h e  
t o  t h e  boundary-layer edge using matrix elements based on va lues  of  t h e  depen- 
dent  v a r i a b l e s  and appropr ia te  d e r i v a t i v e s  evaluated a t  
dependent v a r i a b l e  Gn a t  (m + 1) a r e  determined i n  r eve r se  order  us ing  equa- 
t i o n s  (27) and (29). New va lues  of t h e  s t ream funct ion  f are obtained by 
i n t e g r a t i n g  equat ion (12).  Values o f  t h e  streamwise d e r i v a t i v e s  o f  f are 
redetermined and t h e  new va lues  f o r  f and En a r e  averaged over t h e  i n t e r -  
v a l  with corresponding values  a t  
(n, m + 1/2) .  The s o l u t i o n  was i t e r a t e d  u n t i l  

m. - 

m t o  form new mat r ix  elements a t  

I[F (0) 1 y  - [F (0) I;[ 
5 0.0005 

[F (0) ] '+-' 
(For a l l  computations made thus  f a r , Y t h i s  c r i t e r i o n  was s u f f i c i e n t  t o  assure  
convergence of temperature and concent ra t ion  p r o f i l e s . )  

- 
To s tar t  t h e  s o l u t i o n s ,  values  o f  t he  dependent va r i ab le s  3, and t h e  

stream funct ion  f a t  t h e  i n i t i a l  s t a t i o n  SI, must be spec i f i ed .  From an 
appropr ia te  s t a r t i n g  po in t  t hese  values  can be obtained by so lv ing  t h e  s i m i -  
l a r i t y  form of t h e  boundary-layer equat ions obtained by s e t t i n g  t h e  r ight-hand 
s i d e s  of  equat ions (9) through (11) t o  zero ( i .e . ,  v i s u a l i z e  a s t agna t ion  
po in t ,  or a po in t  along t h e  su r face  of a cone wi th  uniform free-s t ream condi- 
t i o n s  and f ( 0 )  = 0 or f ( 0 )  - l / & ) .  The s i m i l a r i t y  form of t h e  equat ions 
were solved by a method analogous t o  t h a t  descr ibed  above. The mesh-point 
diagram and f i n i t e  d i f f e rence  approximations a r e  given i n  appendix B. 
t u t i n g  the  d i f f e r e n c e  equat ions from appendix B i n t o  equat ions (9) through 
(11) with t h e  r ight-hand s i d e s  s e t  t o  zero a l s o  r e s u l t s  i n  3(N - 2) l i n e a r  
equat ions of t h e  form given by equation (23) .  The equat ions f o r  t h e  c o e f f i -  
c i e n t  matr ix  elements and vec to r  nn a r e  given i n  appendix B. The boundary 
condi t ions  and s o l u t i o n  algori thm remain unchanged, except t h a t  t he  term 
cNs 

Subs t i -  

i n  t h e  concent ra t ion  boundary condi t ion  becomes 

and t h e  boundary condi t ion  on the  stream funct ion  becomes 

(PV), a 
f ( 0 )  = - n (31) 

(PPI eUer 
The s i m i l a r i t y  s o l u t i o n  is  s t a r t e d  by assuming l i n e a r  p r o f i l e s  of t h e  depen- 
dent  v a r i a b l e s  ac ross  the  boundary l aye r  t o  eva lua te  t h e  mat r ix  elements i n  
equat ions (28). 
t i o n s  (27) and (29) and i n t e g r a t i o n  of equat ion (12).  The new v a r i a b l e s  a r e  
then averaged with corresponding values  of t h e  v a r i a b l e s  from t h e  previous 
i t e r a t i o n  t o  form new mat r ix  elements f o r  equat ions (28). The s o l u t i o n  was 
i t e r a t e d  u n t i l  

New va lues  of t he  dependent v a r i a b l e s  a r e  obtained from equa- 

12 



Boundary- Layer Parameters 

In add i t ion  t o  us ing  t h e  s o l u t i o n s  of  t h e  foregoing boundary-layer 
equat ions t o  ob ta in  p r o f i l e s  o f  F ,  T ,  and C 
o t h e r  q u a n t i t i e s  can be computed a s  fol lows:  

a t  each s t a t i o n  along a body, 

Skin f r i c t i o n . -  The de f in ing  equat ion f o r  wall s k i n  f r i c t i o n  i s  

'cw = u w ( u ~ ) w  

Transforming equat ion (32) t o  t h e  p re sen t  coord ina te  system gives  

The d e r i v a t i v e  (Fy)w was obtained by means 

equat ion and t h e  converged s o l u t i o n  f o r  F 

of  a three-poin t  d e r i v a t i v e  

- 1 
(Fy)w - m ( - 3 F W  + 4 F ~ + A y  - F ~ + 2  Ay) 

H e a t . t r a n s f e r . -  The hea t  t r a n s f e r  t o  t h e  w a l l  was obta in  from 

where (T ) was obtained from t h e  converged s o l u t i o n  f o r  T i n  an equat ion 

s i m i l a r  i n  form t o  equat ion (34) .  A t  a s t agna t ion  p o i n t ,  equat ion (35) 
reduces t o  

Y w  

Displacement and momentum th icknesses . -  Ce r t a in  use fu l  i n t e g r a l s  of  t h e  
p r o f i l e s  across  t h e  boundary l a y e r  can a l s o  be eva lua ted .  
ment th ickness  i s  given by 

The usua l  d i sp l ace -  

In  t h e  p re sen t  coord ina te  system t h i s  equat ion becomes 

a 



where Ye i s  t h e  boundary-layer he ight  a t  which F = 0.995. I t  should be 
noted t h a t  t h e  th i ckness  given by 
requi red  t o  desc r ibe  phys ica l ly  t h e  free-stream mass flow ent ra ined  i n  t h e  
boundary l a y e r  with i n j e c t i o n .  
ence 13, t h e  appropr i a t e  expression i s  

6* i s  no t  t h e  displacement th ickness  

To ob ta in  t h a t  t h i ckness ,  as shown i n  r e f e r -  

The momentum th ickness  i s  given by t h e  equat ion  

RESULTS AND DISCUSSION 

I .o The foregoing equat ions were 
programmed i n  Fortran I V  f o r  so lu-  
t i o n  on an IBM 7094 computer. The 
method of s o l u t i o n  was v e r i f i e d  by .8 

- Ref 14, Ond a(c) comparisons with numerical solu-  
0 Present,  N = 21, a =I  

a.0.0 t i o n s  obtained from o the r  sources  
.6 0 az0.5 and by comparisons with experi-  

- U mental da t a .  Some examples of  
ue t h e s e  comparisons are given below 

t o  i l l u s t r a t e  t h e  c a p a b i l i t i e s  and 
advantages of t h e  method. 

.4 

P =  0 
u,= 2 9 0 4  ft/sec 
1,- 1092"R 

.2 t,= 493"R 

t,: 390"R S i m i l a r i t y  Solu t ions  

0 A s  noted i n  t h e  a n a l y s i s  

d i f f e rence  formulation was used t o  
s o l v e  t h e  s i m i l a r i t y  form of  t h e  

.45 boundary-layer equat ions.  To ver -  
i f y  t h i s  approach, a comparison 
with exac t  s i m i l a r i t y  s o l u t i o n s  
was made. Typical examples a r e  
d iscussed  below. 

.55 s e c t i o n ,  a s p e c i a l  f i n i t e -  

T 

.35 

(a) Velocity profile. 
(b) Temperature profile. 

Figure 1 shows a comparison 
with t h e  v e l o c i t y  and temperature 
p r o f i l e s  from reference  14. Pro- 
f i l e s ,  wi th  and without a i r  i n j e c -  
t i o n ,  are shown. (The l inear  Figure 1.- Comparison of the present solution 

with the solution of LOW, reference 14. 

14 



v i s c o s i t y  l a w  r epor t ed  i n  r e fe rence  14 was a l s o  employed i n  t h e  p re sen t  
s o l u t i o n s  t o  e l imina te  t r a n s p o r t  p roper ty  d i f f e r e n c e s . )  Resul t s  from t h e  pres-  
e n t  method were obtained f o r  s e v e r a l  va lues  of  t h e  scale f a c t o r  a us ing  2 1  
nodal po in t s  (N) ac ross  t h e  boundary layer .  As mentioned previous ly ,  t he  
choice of ct determines t h e  spacing of  t h e  nodal p o i n t s  across  t h e  l a y e r  and 
t h e  choice has some inf luence  on t h e  s o l u t i o n  i n  t h e  o u t e r  po r t ion  of t h e  
boundary layer .  See, f o r  example, t h e  s o l u t i o n  f o r  f ( 0 )  = 0 i n  f i g u r e  1. 
Experience has  shown va lues  of  a 5 0.5 are requi red  when i n j e c t i o n  is being 
considered. However, even f o r  a poor choice of a, t h e  p r o f i l e s  and der iva-  
t i v e s  of  v e l o c i t y  and temperature near  t h e  w a l l  a r e  accu ra t e  enough f o r  most 
p r a c t i c a l  app l i ca t ions .  
t i o n s  of a and N 

No at tempt  was made t o  determine t h e  optimum combina- 
f o r  t h i s  o r  any of t h e  fol lowing examples. 

A comparison of t h e  p re sen t  
s o l u t i o n  with t h e  s i m i l a r i t y  so lu-  
t i o n  from re fe rence  15 f o r  f o r -  

f i g u r e  2. The thermodynamic and 
t r a n s p o r t  p r o p e r t i e s  given i n  t h e  
a n a l y s i s  s e c t i o n  were used €or 

- Ref 15, table Ea  
0 Present, ~ - 2 1 ,  a=o.5 e ign  gas i n j e c t i o n  i s  shown i n  

U - Ue t h e  p re sen t  so lu t ions ,  and these  
or were no t  exac t ly  t h e  same as 

(I-C,) those  r epor t ed  i n  r e fe rence  15. 
Veloc i ty ,  helium-concentration, 
and temperature  p r o f i l e s  agree 
very  w e l l ,  except f o r  d i f f e rences  
i n  t h e  concent ra t ion  near  t h e  
wall .  The d i f f e rences  were a t t r i -  
buted t o  t h e  d i f f e r e n t  t r a n s p o r t  
p r o p e r t i e s  employed i n  t h e  two 
so lu t ions .  .8 - 

Nonsimilar Solu t ions  

The p resen t  method was 
T 

.4 v e r i f i e d  p r i m a r i l y  through compar- 
i sons  with s o l u t i o n s  us ing  a modi- 

7, computer program (see r e f s .  1 and 
7 3 ) .  In t h e  Smith-Clut ter  method, 

- 

( b )  m r l  f i e d  form of  t h e  Smith-Clutter 
.2 I I I I v 

0 I 2 3 4 5 

(a) Velocity and concentration. 
(b) Temperature. 

t h e  p a r t i a l  d i f f e r e n t i a l  equa- 
t i o n s  are reduced t o  ord inary  d i f -  
f e r e n t i a l  eaua t ions  i n  n bv . -  

Figure 2.- Comparison of the present solution f i n i t e  d i f f i r e n c i n g  d e r i v a t i v e s  
i n  t h e  E d i r e c t i o n .  The eaua- with the solution of Baron, reference 15. 

t i o n s  are solved by t h e  so-ca l led  "shooting" technique - t h a t  is ,  as a t w d -  
po in t  boundary-value problem p resc r ib ing  i n i t i a l  condi t ions  f o r  d e r i v a t i v e s  
of v e l o c i t y  and temperature  a t  
t i o n s  u n t i l  t h e  edge condi t ions  are s a t i s f i e d  as rl -f m. 

rl = 0, and i t e r a t i v e l y  changing t h e s e  condi- 

15 
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(a) Heating. 
(b) Shear stress. 

Figure 3.- Comparison of nonsimilar solutions for a sphere 

Figure 3 presen t s  an example comparison of p red ic t ed  hea t ing  r a t e s  and 
wall shear  along t h e  su r face  of a hemisphere. 
p re s su re  and boundary-layer-edge v e l o c i t y  and temperature  were used as input  
t o  both computer programs. 
as was t h e  agreement between v e l o c i t y  and temperature  p r o f i l e s  a t  va r ious  loca- 
t i o n s  along t h e  hemisphere. A s  descr ibed  i n  t h e  a n a l y s i s  s ec t ion ,  i n i t i a l  pro- 
f i l es  f o r  t h e  p re sen t  method were obtained by so lv ing  t h e  f i n i t e  d i f f e r e n c e  
form of equat ions (9) through (12) a t  t h e  s t agna t ion  p o i n t  where 5 = 0. Com- 
pu ta t ions  were then made f o r  t h e  f u l l  se t  of equat ions a t  92 loca t ions  along 
t h e  hemisphere. The Ax s t e p  s i z e  was cons tan t  a t  a va lue  of 0.005 f t .  No 
at tempt  was made t o  determine t h e  maximum 
computing time because such opt imiza t ion  would depend on body geometry and 
corresponding boundary-layer-edge condi t ions  and t h e  r e s u l t s  would not  be gen- 
e r a l l y  app l i cab le  t o  o t h e r  examples. 
t h e  p re sen t  s o l u t i o n s  r equ i r ed  about 0.04 minute p e r  body s t a t i o n  versus  about 
0.7 minute p e r  s t a t i o n  f o r  t h e  method of  r e fe rence  1. 

The same values  o f  su r face  

Agreement between the  two methods is  e x c e l l e n t ,  

Ax s t e p  s i z e  t o  achieve minimum 

However, it i s  i n t e r e s t i n g  t o  note  t h a t  

A more s t r i n g e n t  example i s  given i n  f i g u r e  4 .  Solu t ions  were obtained 
f o r  a cone with a sharp  s o l i d  t i p  followed by a porous s u r f a c e  with uniform 
a i r  i n j e c t i o n  (see re f .  16) .  The decrease i n  s k i n  f r i c t i o n  and accompanying 
inc rease  i n  displacement th ickness  a long t h e  cone s u r f a c e  i s  compared with 
corresponding va lues  obta ined  from t h e  computer programs descr ibed  i n  r e f e r -  
ences 1 and 16. 
cons tan t  i n  a l l  programs. 
were obtained from t h e  s i m i l a r i t y  form of equat ions (9) through (12),  evalu- 
a t e d  a t  x = 0.158 f t  and f o r  f ( 0 )  = 0. Solu t ions  beyond t h i s  l oca t ion  were 
obtained from t h e  complete equat ions with t h e  p re sc r ibed  va lue  of (pv),. The 
Ax s t e p  s i z e  was 0.00025 f t  f o r  t h e  f irst  21 computing s t a t i o n s  and then was 
increased  t o  0.015 f t  f o r  t h e  remaining s t a t i o n s .  
was chosen t o  avoid numerical i n s t a b i l i t i e s  due t o  t h e  s t e p  change i n  (pv),. 

Boundary-layer-edge condi t ions  and cone p res su re  were assumed 
The s t a r t i n g  p r o f i l e s  f o r  t h e  present  s o l u t i o n s  

The small i n i t i a l  s t e p  s i z e  

16 
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Figure 4.- Comparison of nonsimilar solutions for uniform air injection on a cone. 
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For t h e  lowest i n j e c t i o n  ra te ,  agreement wi th  t h e  o t h e r  computed s o l u t i o n s  i s  
very  good. 
s o l u t i o n s  us ing  t h e  "shooting" technique (ref. 1) d i d  not  s a t i s f y  t h e  der iva-  
t i v e  boundary condi t ions  as + m f o r  x > 0.2 f t ;  i n  add i t ion ,  t h e  program 
would no t  cont inue beyond 
proceeding f u r t h e r  wi th  t h e  p re sen t  method and t h a t  o f  r e fe rence  16. 
f i c u l t y  encountered by t h e  "shooting" technique i s  t y p i c a l  o f  those  encount- 
ered by t h i s  method when g rad ien t s  of  t h e  dependent v a r i a b l e s  near  t h e  wall 
become small. 
t h e  dependent v a r i a b l e s ,  r a t h e r  than t h e i r  s lopes ,  are employed t o  ob ta in  solu-  
t i o n s .  As a r e s u l t ,  no d i f f i c u l t y  has been encountered wi th  i n j e c t i o n  prob- 
lems where the  s k i n  f r i c t i o n  o r  h e a t  t r a n s f e r  become very  small. This 
advantage would a l s o  be  expected when so lv ing  problems with adverse p re s su re  
g rad ien t  approaching i n c i p i e n t  s epa ra t ion .  
descr ibed  i n  r e fe rence  16 a l s o  has  these  advantages. In  t h e  example above, 
t h e  s o l u t i o n  from re fe rence  16 f a i l e d  t o  converge a t  x = 0.65 f t  ( the  next  
computing s t a t i o n ) ,  probably because the  Ax s t e p  s ize  was too  la rge .  

For t h e  h ighes t  i n j e c t i o n  r a t e  considered ( ~ v ) ~ / ( p u ) ,  = 2 . 3 7 ~ 1 0 - ~ ,  

x = 0.325 f t ,  whereas t h e r e  was no d i f f i c u l t y  i n  
The d i f -  

The d i s t i n c t  advantage of  t h e  p re sen t  method i s  t h a t  va lues  of 

I t  i s  no t  known whether t h e  method 

One of  t h e  purposes f o r  developing t h e  p re sen t  f i n i t e - d i f f e r e n c e  method 
of s o l u t i o n  inc luding  fo re ign  gas i n j e c t i o n  was t o  assist i n  d a t a  c o r r e l a t i o n s  
of wind-tunnel experiments. A conf igura t ion  c u r r e n t l y  under s tudy i s  similar 
t o  t h a t  used i n  t h e  previous example; t h a t  i s ,  a 5' cone with a s o l i d  sharp  
t i p  followed by a uniformly porous conica l  su r f ace .  The p red ic t ed  e f f e c t s  of 
gas i n j e c t i o n  f o r  t h i s  t e s t  model a r e  given below and compared with some exper- 
imental  h e a t - t r a n s f e r  da t a  taken a t  Ames Research Center  i n  t h e  3 . 5 - f t  hyper- 
son ic  wind tunnel  (see r e f .  17).  

Figure 5 p re sen t s  t h e  p red ic t ed  laminar boundary-layer hea t  t r a n s f e r  
along t h e  porous cone su r face  f o r  t h r e e  i n j e c t a n t  gases  and f o r  s eve ra l  i n j e c t -  
a n t  r a t e s .  The p red ic t ions  were obtained assuming uniform boundary-layer-edge 
condi t ions  o f  Mach number, temperature ,  and pressure ,  and us ing  the  measured 
i n j e c t i o n  r a t e  d i s t r i b u t i o n  from reference  17. The symbols r ep resen t  measure- 
ments of  t h e  laminar boundary-layer hea t ing  ra te  obta ined  f o r  each of  t h e  
i n j e c t a n t  r a t e s .  Only laminar boundary-layer hea t ing  d a t a  a r e  shown i n  f i g -  
u r e  5 .  
l oca t ions  where these  d a t a  are p l o t t e d .  
t h e  i n j e c t a n t  ra te  decreased t h e  hea t  t r a n s f e r  t o  a n e g l i g i b l e  value.  
same i n j e c t a n t  r a t e  t h e  amount of hea t ing  reduct ion  depended on the  i n j e c t a n t  
gas molecular weight; compare, f o r  example, t h e  reduct ions  f o r  each i n j e c t a n t  
a t  ( ~ v ) ~ / p , u ,  = l . l ~ l O - ~ .  
cons ider ing  t h e  experimental  u n c e r t a i n t i e s  i n  l o c a l  i n j e c t i o n  rates and t h e  
f a c t  t h a t  t h e  theory  d i d  not  account f o r  t h e  changes i n  boundary-layer-edge 
Mach number, temperature,  and pressure  r e s u l t i n g  from displacement e f f e c t s  due 
t o  i n j e c t i o n .  'The displacement e f f e c t s  are p a r t i c u l a r l y  important f o r  t h e  
helium i n j e c t i o n  tests.  

Trans i t i on  occurred and t h e  hea t ing  rates increased  downstream of t h e  
For each i n j e c t a n t  gas ,  i nc reas ing  

For t h e  

The agreement between theory  and experiment i s  good, 
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- Present solution; N.21, a=0.5 
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(a) A i r  in jec t ion .  
(b) Argon in jec t ion .  
(c) Helium in jec t ion .  

Figure 5.- Comparison o f  present  so lu t ion  with hea t - t ransfer  da ta  on a sharp 5" porous 
cone, reference 17. 

CONCLUDING REMARKS 

An accurate numerical method was developed for solving the nonsimilar 
boundary-layer equations, including binary gas injection. The conservation 
equations in the familiar Levy-Lees coordinates were transformed to new coordi- 
nates having a finite domain. By the appropriate choice of implicit finite 
difference expressions, the governing partial differential equations and 
boundary conditions were reduced to a set of linear algebraic equations in 
terms of the dependent variables only and a single stream function equation. 
Initial values of the dependent variables required to solve the nonsimilar 
equations were determined by applying the same method to solve the similarity 
form of the boundary-layer equations. 

The capabilities and accuracy of the method were demonstrated by 
comparison with other numerical solutions and with experimental data. The com- 
parisons showed that the present method could be accurately applied to a vari- 
ety of examples. The method is ideally suited to solving flow problems where 
skin friction and heat transfer become small, as in the case of boundary-layer 
inj ection. 

19 
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Additional information regarding the computer program details can be 
obtained by contacting the authors. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif. 94035, July 16, 1969 
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APPENDIX A 

FINITE DIFFERENCE AND MATRIX ELEMENT EQUATIONS 

FOR THE NONSIMILAR BOUNDARY-LAYER EQUATIONS 

The following finite-difference equations were used to reduce the 
nonsimilar boundary-layer equations to a system of linear algebraic equations. 
The appropriate grid system from sketch (b) is reproduced here with redundant 
grid notation for convenience in writing the difference equations. 

m m +  I 
Sketch (b) 

G = Ge 

Ge - Gb 
AS GS = 

G2 = GbGe 



Equations (A2) through (A4), the Crank-Nicholson formulas, are used to approxi- 
mate the unknowns and derivatives of the unknowns. The central difference 
equations, (AS) and (A6), are used to approximate derivatives of the proper- 
ties. Equations (A7) through (All) were chosen so that the unknowns appear 
linearly. 

These difference equations are substituted into equations (9) through 
(11) to obtain 

Momentum : 

Energy: 

Expressions for the coefficients are presented below. There are 3(N - 2) 
equations f o r  N nodal points and these 
matrix equation 

are conveniently expressed by the 

where 

An = 

-All 0 

A21 A22 

-0 0 
:2 

n,m 
or n,m+1/2 

:2 3 ]  

‘33 n,m 

n = 2 , 3 ,  . . . ,  N - 1  (A151 

- - 
Dn = 

Bn = 

o r  n,m+1/2 

Bll 0 

B21 022 0 
0 0 ‘ 3 1  n,m 

o r  n,m+1/2 
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The mat r ix  elements are given i n  t h e  fol lowing equat ions,  where f o r  conve- 
nience,  Z r ep laces  t h e  term a ( l  - y ) .  Also it i s  t o  be noted t h a t  follow- 
ing  t h e  f irst  i t e r a t i o n  q u a n t i t i e s  no t  subscr ip ted  with a r e  evaluated a t  
(n, m + 1/2) by averaging q u a n t i t i e s  a t  n ,  m with those  a t  (n, m + 1 ) .  

b 

1 (-z'y + a' - f - 2SfS) Z + -  
= r"' 2 Ay2 'y 

B 2 1  = ( -  &) Bue2 

c21 = 4 2 1  

(*b 
4 AyScCp 1 
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Z +a 
A33 = 2Sc Ay2 + - 4 AY [-z($)y + - f - *SfS]} 

-A33 + -) +z2 
Sc Ay2 

AS 
2SFb2(C1)b J D 3 =  [ - -  :g: (clb)yy + zoy [-z(&.), + - sc - f - 2SfS] - 
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APPENDIX B 

FINITE DIFFERENCE AND MATRIX ELEMENT EQUATIONS 

FOR THE SIMILAR BOUNDARY-LAYER EQUATIONS 

The finite-difference equations used to reduce the similarity boundary- 
layer equations to a system of linear algebraic equations are given below. 
The grid system is shown in sketch (c) with redundant notation for conve- 
nience in writing the difference equations. The superscript (v) is understood 
to be the iteration number. 

Sketch (c) 

Substituting the above difference equations into equations (9) through (11) 
with the right-hand sides set to zero and approximating 
results in equations of the form given by equations (A12) to (A14). The 
expressions for matrix elements are 

f(M)y by fbv(M)y 

+ - + - - -  
2 by 2 by 

z2$y' z2+v 
A l l  = - ~ 

Ay (AY)~ 

25 
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D1 = [-a ( y ) ]  

222 @ v 

(AY) 
c22  = [-b2 + -(E) 3 
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c 3 3  = [-A33 + 2z2 (&$I 
D3 = 0 
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edge of phemiiieua in the ntniosphese and spnce. The Adniiuistrntion 
shnll psozmide for  the widest imct icnbfe  mid appropsiate disseniiiin.fioia 
of i~zfosiiintiou conceriziiig its nctit mities mad the sesiilts theseof." 

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and 
technical information ionsidered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL NOTES: Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: 
Information receiving limited distribution 
because of preliminary data, security classifica- 
tion, or other reasons. 

CONTRACTOR REPORTS: Scientific and 
technical information generated under a NASA 
contract or grant and considered an important 
contribution to existing knowledge. 

TECHNICAL TRANSLATIONS: Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
derived from or of value to NASA activities. 
Publications include conference proceedings, 
monographs, data compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest i n  commercial and other non-aerospacc 
npp!ications. Publications include Tech Briefs, 
Technology Utiliz,ition Reports and Notes, 
and Technology Surveys. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. 20546 


